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Introduction 
Radioimmunotherapy is the process of binding an antibody to a tumor-associated antigen 

to deliver a lethal dose of radiation to tumor cells. The efficacy of RIT as a skin cancer treatment 
is dependent on the tumor depth that the radiolabeled antibody can penetrate and thus bind to 
melanin binding sites to emit cytocidal doses of radiation that kill melanoma cells. This study 
developed three-dimension (3D) and 1-dimensional (1D) models of the radiolabeled antibody’s 
interaction with tumor melanin to gain insight into the pharmacokinetics of RIT.  

The process of RIT begins with intravenous administration of the radiolabeled antibody 
in the patient’s body. The antibody circulates through the plasma and is transported into the 
normal tissue surrounding the tumor across capillary walls. Once it is in the tissue, the antibody 
diffuses through and does not bind to the tissue in large amounts. It reaches the melanin antigen 
in the tumor and binds with the binding site to form an antibody-antigen complex. This complex 
emits the cytocidal doses of radiation. Once the complex forms, it then dissociates into antibody 
and antigen, and some of the antibody in the tissue is cleared through lymphatic vessels. 

This study aims to determine whether a 3D or 1D model is more accurate in assessing 
radial concentration levels of the various molecules present in the system. This study also aims to 
understand the antibody binding process and the effects of varying initial antigen concentrations 
on the RIT process. 
 
Methods for the 3D Model 
 In order to generate the 3D model of the tumor within the tissue, two concentric spheres 
of radii 1.3 and 15 mm were constructed in COMSOL. The following mass transfer equations 
were used for the antigen, antibody, and antibody-antigen complex. 

𝜕𝑐!
𝜕𝑡 + ∇ ∙ 𝐽! = 𝑅! 
𝐽! = −𝐷!∇𝑐! 

Since convection was not present in this model, this simplified to the following equation. 
∇ ∙ −𝐷!∇𝑐! = 𝑅! 

The diffusion of the antibody in the tumor from the normal tissue was assumed to not 
affect the antibody concentration at the outer normal tissue surface because of the large tissue 
radius compared to the tumor radius. A zero-flux boundary condition was used at the outer 
surface of the normal tissue. The reaction terms for each of the three molecules were governed 
by equations.  

For the antigen, the reaction term was 
𝑅"# = 𝑛(−𝑘$𝐶"%𝐶"# + 𝑘&𝐶"%&"#) 

where n is the valance of binding, 5, 𝑘$ is the forward binding rate constant, 5.0E4 M-1s-1, 𝑘& is 
the dissociation rate constant, 1.0E-5 s-1. The diffusivity of antibody in the tumor is 4.16E-7 
cm2s-1. The initial antigen concentration was 76000 nM within the tumor and 0 nM in the tissue. 

For the antibody, the reaction term in the tumor was determined by the following 
equation. 

𝑅"%,()*+, − 𝑘$𝐶"%𝐶"# + 𝑘&𝐶"%&"# 
The reaction term in the tissue was 

𝑅"%,(!--). = 𝑘%/𝐶"%0 − 𝑘/1𝐶"% 

1.1 
1.2 

1.3 

2.1 
 

3.1 
 
4.1 
 



where 𝑘%/ is the rate constant for uptake of antibodies into tissue from blood plasma, 4.6E-5 s-1, 
and 𝑘/1 is the rate constant for removal of antibodies from the tissue by lymphatic clearance, 
1.78E-6 s-1. 𝐶"%0 is the concentration of antibodies in blood plasma, determined by the following 
equation. 

𝐶"%0 = 𝐶"%2𝑒&3( 
where 𝐶"%2 is the initial plasma concentration of 4.94 nM, and 𝜆 is 2.96E-5 s-1. This equation 
was determined by exponentially curve fitting experimental data of 𝐶"%2/𝐶"%0	over time, 
assuming first order clearance. The diffusivity of antibody in the tumor was 4.16E-7 cm2s-1, 
while the diffusivity in the tissue was 2.0E-7 cm2s-1. The initial antibody concentration was 0 nM 
in the tumor and the tissue.  
 Finally, for the antibody-antigen complex, the reaction term was the following. 

𝑅"%&"# = 𝑘$𝐶"%𝐶"# − 𝑘&𝐶"%&"# 
The initial complex concentration was 0 nM in the tumor and the tissue. 

An extremely fine physics-controlled mesh was used, and the mesh density at the tumor-
tissue interface is shown below in Figure 1. The model was solved from time zero to 72 hours 
with one-hour intervals. There were 1150382 total domain elements, and the computation time 
was 10 minutes and 10 seconds. 

 
Figure 1: Mesh density at the tumor-tissue interface 

 
Results of the 3D Model 
 The 3D model was developed to view radial concentrations of the three key molecules at 
0, 24, 48, and 72 hours. Figures 2a, 2b, and 2c below illustrate the change in radial concentration 
of the antibody, antigen, and antibody-antigen-complex, respectively. Each of the molecule 
groups has been color-normalized across the 72 hours for ease of comparison. Additionally, 
negative concentration data was excluded from all of the plots for ease of comparison, but the 
very presence of negative concentration data indicates an inaccuracy within the model. This is 
due to an insufficient mesh density and will be discussed in further detail later. 
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Shown in Figure 2a, at 0 hours, the antibody concentration begins at 0 nM. Once it has 
diffused from the blood plasma to the tissue, at 24 hours, it is present in very high concentrations 
within the tissue, but as radial position approaches the tumor surface, antibody concentration 
gradually approaches 0 nM again. This is because the initial antigen concentration is so high, set 
at 76000 nM, that the antibody immediately binds to the antigen at the tumor-tissue interface and 
is therefore present in very low concentrations within the tumor itself. At 48 hours, less than half 
of the initial antibody concentration is present in the tissue, since a lot of the antibody has bound 
to the antigen within the tumor. Some of this concentration may also be due to the dissociation of 
the antibody from the complex, allowing the antibody to diffuse out of the tissue. Once again, 
antibody concentration within the tumor is 0 nM in this plot because all of the antibody has 
bound to the antigen at the tumor-tissue interface due to the high initial antigen concentration. 
Finally, at 72 hours, most of the antibody has diffused to the tumor-tissue interface and has 
bound to the antigen, so the antibody concentration across the entire tumor and tissue is now 
close to 0 nM. The small concentration of antibody within the tissue may be due to the forward 
binding reaction not being fully complete and may also be due to the dissociation of the antibody 
from the complex, allowing the antibody to be present in the tissue. 

Shown in Figure 2b, radial antigen concentration is greatest within the tumor and 
approaches 0 nM outside of the tumor. Over the 72 hours, the antigen concentration within the 
tumor decreases slightly but remains otherwise unchanged. This is because the initial 
concentration of the antigen in the tumor is so high (76000 nM) that a majority of it remains even 
after all of the antibody has diffused to the tumor-tissue interface and bound to it. 

Shown in Figure 2c, the antibody-antigen complex begins at a radial concentration of 0 
nM at 0 hours because there is no antibody present yet to bind to the antigen. At 24 hours, there 
is a small antibody-antigen complex concentration at the tumor-tissue interface and slightly 
within the tumor boundary, since antibody has diffused to the interface and is now binding with 
the antigen. The antibody does not make it very far past the interface into the tumor because the 
initial antigen concentration is so high that the forward binding reaction occurs very quickly at 
the interface. The concentration of the complex at the interface increases at 48 hours as more 
antibodies diffuse to the interface, and there is only a slight increase from this concentration at 
72 hours because most of the antibody has already been bound to the antigen, as seen in Figure 
2a. 
  



 
Figure 2a: Color-normalized [0, 3.75 nM] antibody radial concentration at 0, 24, 48, and 72 

hours. 

 
Figure 2b: Color-normalized [0, 76000 nM] antigen radial concentration at 0, 24, 48, and 72 

hours. 

 
Figure 2c: Color-normalized [0, 132.47 nM] antibody-antigen complex radial concentration at 0, 

24, 48, and 72 hours. 
 
To graphically illustrate the change in radial concentration shown above, Figure 3 was 

created. It is clear from these graphs that as antibodies diffuse from the plasma through the tissue 
and reach the tumor-tissue interface over time where they begin binding to antigens, the antibody 
concentration within the tissue decreases, the antigen concentration within the tumor slightly 
decreases, and the antibody-antigen complex concentration at the interface increases. However, it 
is important to note that these graphs illustrate negative concentrations, most notably for the 
antibody-antigen complex. Negative concentrations are realistically impossible and indicate 
deficiencies within the 3D model. As previously mentioned, this is likely a result of a low mesh 
density that was not able to accurately resolve all of the equations to a high enough degree of 
accuracy. 



   
Figure 3: (left) Antibody, (middle) antigen, and (right) antibody-antigen complex radial 

concentration at 0, 24, 48, and 72 hours. 
 

Corroborating the idea of a flawed model, Figure 4 below shows that the antibody-
antigen complex concentration at the tumor-tissue interface is not uniform in the theta and phi 
directions. This is realistically inaccurate because there should be a uniform concentration across 
the tumor-tissue interface since it is a radially symmetrical sphere with consistent conditions 
across its surface. This further suggests that the mesh node density is not high enough to generate 
an accurate representation of radial concentration. A more accurate model would use a finer 
mesh that would have a much higher computational load and require significantly more time to 
generate. As a result, the 3D model is not ideal to analyze radial concentration, and the 1D model 
is likely sufficient to understand the problem. 

 
Figure 4: Antibody-antigen complex concentration at the tumor-tissue interface. 

  



Methods for the 1D Model 
Given the inaccuracies of the 3D model, the 1D model was created to reduce 

computational load and increase accuracy of results with a denser mesh. The system was 
modeled as a 1.3 mm line for the tumor and an adjacent 13.7 mm line for the tissue, creating a 15 
mm radius for the tissue. A user-controlled mesh with a maximum element size of 0.0015 mm 
was used, and the 1D intervals in the computational domain are shown in Figure 5 below. 
 

 
Figure 5: (left) Mesh for the 1D model. (right) Zoomed-in mesh displaying 1D intervals within 

the computation domain of the model. 
 

The following partial differential equations were used for the antibody, antigen, and 
antibody-antigen complex.  

𝑒
𝜕4𝐶
𝜕𝑡4 + 𝑑

𝜕𝐶
𝜕𝑡 + ∇ ∙ Γ = 𝑓 

∇=
𝜕
𝜕𝑟 

 
Γ is conservative flux, 𝑓 is the source term, 𝑑 is the damping coefficient, and 𝑒 is the mass 
coefficient. Since there was no mass coefficient term for any of the molecules, the equation 
simplified to the following. 

𝑑
𝜕𝐶
𝜕𝑡 +

𝜕
𝜕𝑟 ∙ Γ = 𝑓 

As with the 3D model, diffusion of the antibody in the tumor from the normal tissue was 
assumed to not affect the antibody concentration at the outer normal tissue surface because of the 
large tissue radius compared to the tumor radius. A zero-flux boundary condition was used at the 
outer surface of the normal tissue. 
 Using these governing equations, the conservative flux, source terms and damping 
coefficient were 

Γ = 0 
𝑓 = 	𝑛(−𝑘$𝐶"%𝐶"# + 𝑘&𝐶"%&"#) 

𝑑 = 1 
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𝝏𝑪𝑨𝒈
𝝏𝒕 = 𝒏(−𝒌$𝑪𝑨𝒃𝑪𝑨𝒈 + 𝒌&𝑪𝑨𝒃&𝑨𝒈) 

where n is the valance of binding, 5, 𝑘$ is the forward binding rate constant, 5.0E4 M-1s-1, 𝑘& is 
the dissociation rate constant, 1.0E-5 s-1. The diffusivity of antibody in the tumor is 4.16E-7 
cm2s-1. The initial antigen concentration was 76000 nM within the tumor and 0 nM in the tissue.  
 The equations for the antibody in the tumor were  

Γ = −𝐷()*+,𝑟4
𝑑𝐶"%
𝑑𝑟  

𝑓 = 𝑟4(−𝑘$𝐶"%𝐶"# + 𝑘&𝐶"%&"#) 
𝑑 = 𝑟4 

𝒓𝟐
𝝏𝑪𝑨𝒃
𝝏𝒕 +

𝝏
𝝏𝒓 A−𝑫𝒕𝒖𝒎𝒐𝒓𝒓𝟐

𝒅𝑪𝑨𝒃
𝒅𝒓 D = 𝒓𝟐(−𝒌$𝑪𝑨𝒃𝑪𝑨𝒈 + 𝒌&𝑪𝑨𝒃&𝑨𝒈) 

where 𝐷()*+, is the diffusivity in the tumor, 4.16E-7 cm2s-1. 
The equations for the antibody in the tissue were 

Γ = −𝐷(!--).𝑟4
𝑑𝐶"%
𝑑𝑟  

𝑓 = 𝑟4(𝑘%/𝐶"%0 − 𝑘/1𝐶"%) 
𝑑 = 𝑟4 

𝒓𝟐
𝝏𝑪𝑨𝒃
𝝏𝒕 +

𝝏
𝝏𝒓 A−𝑫𝒕𝒊𝒔𝒔𝒖𝒆𝒓𝟐

𝒅𝑪𝑨𝒃
𝒅𝒓 D = 𝒓𝟐(𝒌𝒃𝒍𝑪𝑨𝒃𝟎𝒆&𝝀𝒕 − 𝒌𝒍𝒚𝑪𝑨𝒃) 

where 𝑘%/ is the rate constant for uptake of antibodies into tissue from blood plasma, 4.6E-5 s-1, 
𝑘/1 is the rate constant for removal of antibodies from the tissue by lymphatic clearance, 1.78E-6 
s-1, and 𝐷(!--). is the diffusivity in tissue, 2.0E-7 cm2s-1. 𝐶"%0 is the concentration of antibodies 
in blood plasma, determined by the following equation. 

𝐶"%0 = 𝐶"%2𝑒&3( 
where 𝐶"%2 is the initial plasma concentration of 4.94 nM, and 𝜆 is 2.96E-5 s-1. The initial 
antibody concentration was 0 nM in the tumor and the tissue.  
 Finally, for the antibody-antigen complex, the equations were the following. 

Γ = 0 
𝑓 = 	𝑘$𝐶"%𝐶"# − 𝑘&𝐶"%&"# 

𝑑 = 1 
𝝏𝑪𝑨𝒃&𝑨𝒈
𝝏𝒕 = 𝒌$𝑪𝑨𝒃𝑪𝑨𝒈 − 𝒌&𝑪𝑨𝒃&𝑨𝒈 

The initial complex concentration was 0 nM in the tumor and the tissue. 
 The model was solved from time zero to 72 hours with one-hour intervals, and a 
parametric sweep was run for initial antigen concentrations of 76000, 7600, 760, 76, and 7.6 nM. 
There were 10001 total domain elements, and the computation time was 18 seconds, which was 
significantly lower than the computation time for the 3D model.  
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Results of the 1D Model 
 Primarily, in Figure 6, antibody concentration within the tumor and tissue was plotted as 
a function of radial distance for 2, 4, 8, 16, 24, 36, 48, 72 hours for five different initial antigen 
concentrations, 76000, 7600, 760, 76, and 7.6 nM. The graphs for 76000 and 7600 nM initial 
antigen concentrations are exactly the same, likely because the initial antigen concentrations are 
so high for both that the antigens in both setups are able to fully bind the antibodies once they 
reach the tumor-tissue interface, and there is excess antigen present. Moreover, the first three 
graphs with initial antigen concentrations of 76000, 7600, and 760 nM all follow the same trend 
in antibody concentration over time. In each, the antibody concentration is 0 nM within the 
tumor, and the concentration in the surrounding tissue is relatively uniform because complex 
formation takes place at the tumor-tissue interface due to the large binding rate constant. The 
concentration of the antigen in the tissue is low at 2 hours and slowly increases until it reaches its 
peak at 8 hours. Then, it falls back down at 16 hours and approaches 0 nM at 72 hours. This 
makes sense based on Equations 8.4 and 9.4 and lines up with the results found in the 3D model. 
Before 8 hours, the complex formation reaction at the tumor interface dominates because the 
forward binding rate constant is very large, 5.0E4 M-1s-1, while the diffusive flux is smaller and 
the lymphatic clearance has not yet gotten a chance to catch up with the rate of complex 
formation. However, between 8 and 16 hours, the diffusive flux through the tissue and 
dissociation reaction begins to dominate over the forward binding reaction, thus decreasing the 
overall antibody concentration in the tissue. Therefore, the diffusive flux, and thus the rate of 
removal and consumption, surpasses the complex formation rate, causing the antibody 
concentration in the tissue to decrease until it approaches 0 nM at 72 hours.  
 As initial antigen concentration decreases below 7600 nM, the maximum antibody 
concentration at several time points increases. This is because complex formation occurs more 
slowly since it is dependent on the concentration of the antigen, so when there are less antigens 
available to bind, the antibody is able to exist unbound for longer in the tissue. Moreover, for 
both the 76 and 7.6 nM initial antigen concentrations, the peak antibody concentration is reached 
at 16 hours rather than 8 hours because the antibody takes longer to bind since there are less 
available antigen binding sites. It is also important to note that as initial antigen concentration 
decreases, antibody concentrations at later times within the tumor itself increase above 0 nM and 
even above the antibody concentration within the surrounding tissue. This indicates that the 
antibody has reached the center of the tumor and the antigen binding sites are saturated because 
they cannot bind the antibodies as fast as the antibodies are diffusing through the tissue and 
tumor. In terms of Equation 8.4, this diffusion of the antibody into the tissue occurs because the 
diffusive flux term in the tumor finally becomes larger than the complex formation term when 
the antigen concentration is lower. For the 76 nM example, saturation begins at around 24 hours, 
and for the 7.6 nM example, saturation begins as early as 4 hours. It begins earlier in the 7.6 nM 
example because the antigens become very quickly saturated with such a low initial antigen 
concentration. 
 
 



 

    
Figure 6: Antibody concentration within the tumor and tissue as a function of distance for 2, 4, 8, 

16, 24, 36, 48, 72 hours for 76000, 7600, 760, 76, and 7.6 nM initial antigen concentrations. 
 
 Furthermore, Figure 7 illustrates the antibody-antigen complex concentration as a 
function of distance at 72 hours. For low initial antigen concentrations of 7.6 and 76 nM, the 
radial concentration of the complex remains close to zero and relatively constant throughout the 
tumor. This is because at 72 hours, the antibody has already fully penetrated the tumor and 
bound to the antigens present. There is no more antibody entering the tissue or diffusing to the 
tumor, and most of the antibody has already been used to create the complex. Therefore, the only 
reaction that is occurring is the dissociation of the complex, via Equation 10.4. As a result, the 



complex concentration is uniform throughout the tumor. It is very close to 0 nM for the 7.6 nM 
initial antigen concentration because most of the complex has dissociated.  

For an initial antigen concentration of 760 nM, the complex concentration towards the 
center of the tumor is close to 0 nM and increases radially as it approaches the tumor-tissue 
interface because this is where most of the complex formation occurs since the antigen 
concentration is high enough and there are antigens present to bind. However, this concentration 
reaches a plateau at the interface because there is not enough antigen present to bind all of the 
antibodies, so the antigen becomes almost fully saturated, and the complex concentration can 
only reach a value of around 95 nM. For an initial antigen concentration of 7600 nM, the 
complex concentration towards the center of the tumor is similarly close to 0 nM and increases 
radially as it approaches the interface. However, the concentration does not plateau; it instead 
increases to around 500 nM. This same behavior applies for the initial concentration of 76000 
nM, except the complex concentration exponentially increases even more at the tumor-tissue 
interface to about 1800 nM because the antigens can bind all of the antibodies immediately at the 
surface. In cases of high antigen concentration, the antigen binding sites do not become saturated 
within 72 hours. 
 

  
Figure 7: (left) Antibody-antigen complex concentration as a function of distance at 72 hours. 

(right) Zoomed-in view of graph from 1.14 to 1.3 mm radial distance.  
 
 For each of the initial antigen concentrations tested, the radial distance and volume of the 
tumor penetrated at 72 hours were calculated and reported in Table 1 below. The radial distance 
penetrated is said to occur when the complex concentration reaches 1 nM, indicating that the 
antibody has sufficiently penetrated the tumor. The table shows that the radial distance 
penetrated and thus the volume of the tumor penetrated increases as the initial antigen 
concentration decreases. At very low antigen concentrations of 76 and 7.6 nM, the antibody is 
able to penetrate nearly 100% of the tumor. This makes sense based on Equation 8.4 because 
diffusive flux through the tumor dominates over complex formation as antibody concentration 
decreases. Antibodies are able to diffuse deeper into the tumor since there are less antigen 
binding sites available to bind them and form complexes. For high initial antigen concentrations, 
however, complex formation dominates over diffusive flux, so much of the antibody binding 
occurs at the surface of the tumor, and the antibody thus does not penetrate as deeply into the 
tumor. 
 
  



Table 1: Radial Distance and Volume of Tumor Penetrated at 72 hours for Different Initial 
Antigen Concentration 

Initial Antigen 
Concentration (nM) 

Radial Distance Penetrated 
(mm) 

Volume of Tumor Penetrated 
(%) 

76000 0.0405 9.05 
7600 0.1155 24.35 
760 0.3554 61.63 
76 1.3 100 
7.6 1.3 100 

 
 In order to determine the time at which the peak complex concentration in the radial 
position begins to decrease, Figure 8 was created to show peak complex concentration over time. 
The time at which peak complex concentration begins to decrease was estimated to be about 40 
hours by zooming into the graph. At this time, the plasma antibody concentration is close to 0 
nM and the rate of complex dissociation and lymphatic clearance is surpassing the rate of 
transport from the plasma, as seen in Equation 9.4. This will be described in more detail in the 
Discussion. 

 
Figure 8: (left) Peak concentration of antibody-antigen complex over 72 hours. (right) Zoomed-

in view of graph where peak concentration decreases at 40 hours. 
 
 Figure 9 shows a graph of the average complex concentration within the tumor at 2, 4, 8, 
16, 24, 36, 48, 72 hours for each of the antigen concentrations tested. This was found using the 
line average function in COMSOL. For initial antigen concentrations of 76000, 7600, and 760 
nM, the complex concentration begins at 0 nM at 0 hours, very quickly increases until about 20 
hours, and then increases more slowly until 72 hours. This makes sense because the antibody is 
present in high concentrations at the beginning, so complex formation occurs rapidly, and the 
concentration of the complex therefore increases rapidly. Once the antibody concentration in the 
tissue has decreased because a large amount has already bound to antigens, the rate of complex 
formation decreases, so the concentration of the complex therefore increases less quickly. The 
complex concentration increases throughout the entire time period because the forward binding 
reaction dominates over the backward one, as seen in Equation 10.4. The 760 nM condition 
yields a slightly larger average complex concentration than the two larger initial antigen 
concentrations because the antibody is able to penetrate slightly more of the tumor’s volume in 
the 760 nM case, so complex formation occurs not only on the tumor surface but also slightly 



deeper inside the tumor. Therefore, the average complex concentration across the entire volume 
of the tumor is slightly higher.   

For the lower initial antigen concentration of 76 nM, the complex concentration increases 
much more rapidly than for the higher initial concentrations and then reaches a plateau and 
begins to decrease slightly. The initial increase is greater than that of the three higher initial 
antigen concentrations for the same reason previously mentioned– the antibody is able to 
penetrate the tumor more, so complex formation can occur deeper inside the tumor, and the 
average complex concentration across the tumor volume is therefore larger. The plateau occurs 
either because all of the antibody has been used up and bound to the antigens or because all of 
the antigens are saturated. However, it is more likely the case that the antigens are fully saturated 
since this would occur sooner than the antibodies would be used up because of the very low 
initial antigen concentration. The slight decrease at the end of this curve towards 70 hours is 
likely because there is no more antibody left in the tissue to bind with the antigen once the 
antigen has dissociated from the complex because a lot of the antibody has been removed 
through lymphatic clearance. 

Finally, for the lowest initial antigen concentration of 7.6 nM, the complex concentration 
slightly increases and then quickly plateaus at a low value of less than 2 nM. This is because the 
initial antigen concentration is so low that any time an antigen dissociates from a complex, it 
immediately binds to an antibody, so the concentration of the complex is kept at a relatively 
constant value since the antigen remains saturated throughout the 72 hour period. 

 
Figure 9: Average antibody-antigen complex concentration within the tumor at 2, 4, 8, 16, 24, 

36, 48, 72 hours for varying initial antigen concentrations of 76000, 7600, 760, 76, and 7.6 nM. 
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Discussion 
Saturation of the antigen binding sites at the tumor’s periphery can be defined as any time 

when the antigen concentration at the tumor’s surface (1.33 mm) reaches 0 nM. Figure 10 below 
show the radial antigen concentration within the tumor for initial antigen concentrations of 760, 
76, and 7.6 nM. From these graphs, it is clear that only the 760 and 76 nM initial conditions 
allow the antigen to reach 0 nM at the surface, so antigen saturation at the tumor’s periphery only 
occurs for these two initial concentrations. 

 
Figure 10: Radial antigen concentrations within the tumor at 2, 4, 8, 16, 24, 36, 48, 72 hours for 

initial antigen concentrations of (left) 760, (middle) 76, and (right) 7.6 nM. 
 

Saturation of the antigen binding sites throughout the entire tumor can be defined as any 
time when the antigen concentration at the center of the tumor is equal to 0 nM, indicating the 
antibody has fully penetrated the tumor since the antigens cannot bind the antibodies fast enough 
because the initial antigen concentration is not high enough. Full antibody penetration of the 
tumor occurs for initial antigen concentration of 76 and 7.6 nM, as seen in Table 1 so these are 
the two initial concentrations that yield saturation throughout the entire tumor. There is an excess 
of melanin when the initial concentration of melanin is 76000 and 7600 nM. This can be seen in 
Figure 6 because the graphs for antibody concentration for these two initial antigen 
concentrations are exactly the same, indicating that adding more antigen to the 7600 nM does not 
increase complex formation or decrease antibody concentration, so there is already an excess of 
antigen with an initial concentration of 7600 nM. 
 For a melanin concentration of 76000 nM, the peak antibody-antigen complex 
concentration begins to decrease at about 40 hours, as seen in Figure 8. This occurs because the 
plasma antibody concentration is close to zero and the rate of complex dissociation and 
lymphatic clearance is surpassing the rate of transport from the plasma, as seen in Equation 9.4. 
In actuality, the plasma antibody concentration falls to around zero after about 24 hours, based 
on the exponential decay in Equation 9.5. When the equation is rearranged to solve for time, it 
becomes 𝑡 = − E

3
ln F!"#

F!"$
= − E

4.HIJ&K	-%&
ln F!"#

M.HM	NO
. When 𝐶"%0 approaches 0 nM, t approaches 24 

hours. However, the complex concentration still continues to increase past that point until 40 
hours because the rate of complex formation, 𝑘$𝐶"%𝐶"#, is a second-order reaction, and the 
forward binding constant is so large that it dominates over the complex dissociation reaction. 
However, once the complex dissociation and lymphatic clearance begins dominating at 40 hours, 
the peak complex concentration begins to decrease.   



 Antineoplastic therapy with cytotoxic agents is used to treat cancer and works by binding 
to surface proteins of cancerous cells and promoting inappropriately stable, non-functional 
cellular structure development. Cytotoxic agents can result in depolymerization, dissolution of 
key cellular components, suppression of normal cell dynamics, and more (Ismael et al., 2008). 
This means that in the context of a cancerous tumor, a cytotoxic agent could likely destroy 
antigen binding sites on the cancerous cells. This would consequently decrease the concentration 
of functional melanin binding sites. If radiolabeled antibodies were then administered into the 
patient’s blood, they would cross into the tissue and more quickly saturate the melanin binding 
sites. Therefore, there would be saturation of the melanin binding sites throughout a larger 
percentage of the tumor, as shown in Table 1, which would allow the complex to form deeper in 
the tumor and deliver the radioimmunotherapy throughout the entire mass. Once the antibodies 
have attached to the antigen binding sites deep in the tumor and administered the 
radioimmunotherapy, eventually dissociating from the complex, it would be wise to destroy 
more of the antigen binding sites with cytotoxic agents so another treatment of radiolabeled 
antibodies can penetrate the entire tumor again and destroy the remaining antigens. Therefore, it 
would be best to administer antineoplastic therapy with cytotoxic agents first, followed by RIT, 
and then to repeat the process until the tumor has been destroyed.   



Summary of Peer-Reviewed Journal Article 
Background 
 Many diseases are caused by the deterioration of brain function, including neurological 
disorders, encephalitis, multiple sclerosis, tumors, and strokes (Hassanzadeganroudsari et al., 
2020). Despite the burgeoning development of novel therapeutic systems for brain diseases, 
many of these treatments have low efficacy due to difficulty crossing the blood brain barrier 
(BBB), a layer of endothelial cells that seal off the vascular lumen from the abluminal side where 
the brain resides. The BBB has a unique chemical, immunologic, and functional environment 
because it prevents leukocytes, neuro-toxic macromolecules, and bacteria in the blood from 
accessing the brain interstitial fluid. The BBB does not have trans- or para-cellular channels, so 
molecules in the blood must cross through receptor-mediated transport or lipid-mediated free 
diffusion. Currently, transport efficiency is evaluated with unreliable in vivo and computational 
models that have hindered the development of efficient central nervous system (CNS) drugs.  

Understanding the physiological and biological systems of the BBB can improve this. 
One technique that would greatly benefit from this deeper understanding is nano-drug delivery 
since nanoparticles can effectively penetrate the BBB and CNS. In order to determine a drug’s 
impact on the target site, drug distribution at the target must be understood so that a sufficient 
concentration of the drug can be delivered for effective treatment. Since the human brain is 
inaccessible for sampling, mathematical models are useful in understanding drug distribution in 
the brain and can have significant clinical implications. A model to describe the interaction 
between a drug and nano-carrier and the BBB is particularly useful in developing effective drug 
delivery treatments. 
 
Goal 
 The goal of this study is to analyze mass transfer of nanoparticles across the blood brain 
barrier through the basement membrane, endothelial cells, and astrocytes foot process. To do 
this, the engineers develop two-dimensional (2D) and three-dimensional (3D) models that 
evaluate the mass transfer rate in blood brain capillaries. The data obtained from the models can 
then be used to determine the concentration of drug necessary to reach a target distance across 
the BBB. The study then validates the simulation results by comparing them to experimental data 
for nanoparticle mass transfer resistance in the capillary across a wide range of red blood cell 
distances. Another goal of the model is to create an accurate mesh that reduces computational 
error. Ultimately, the study aims to determine the systemic drug concentration needed to reach a 
set target distance across the BBB.  
 
Numerical Analysis 
 This study used COMSOL Multiphysics software for the 2D and 3D models, and 
computational time for solving the principal equations was approximately 7 minutes. Three 
membranes of the BBB were modeled as resistors in series. The basement membrane is the first 
point of contact with the circulatory systema dn has the largest amount of mass transfer from the 
capillaries. The endothelial cell layer is composed of endothelial cells with tight junctions 
between them which allow for the distribution of substances. The selective movement of 
particles between these cells is assumed to be a constant variable. The final layer is the astrocytes 
foot process, which is above the neural cells and acts as a tight interconnected network. 
 Several assumptions were made about the fluid dynamics of this problem. The blood was 
assumed to behave as a Casein fluid and the flow in the capillary was assumed to be laminar, 



based on a Reynolds number of 0.008 within the capillary. The nanoparticles are immersed in the 
plasma and enter the basement membrane via diffusion through the capillary walls. The capillary 
diameter ranged from 8 to 16 μm, the geometry of the model was assumed to be axisymmetrical, 
and the capillary environment was assumed to be about 80% of the total geometry while the 
capillary space accounted for 20% of the total geometry. Moreover, the study assumes that the 
blood stream flows continuously through the capillaries and is not disrupted by capillary intake. 
 The basic governing equations for flow within the capillary are the following. 

∇𝑢 = 0 
𝜕𝑢
𝜕𝑡 + 𝑢∇

(𝑢) = −
1
𝜌 ∇

(𝑝) + 𝜗∇4𝑢 

𝜕𝑐
𝜕𝑡 + 𝑢∇𝐶 = ∇(𝐷∇𝐶) 

In these equations, 𝑢 is velocity, 𝜗 is viscosity, C is concentration, and D is diffusion coefficient. 
Moreover, the governing equations for mass transfer around the capillary porous media are the 
following. 
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In these equations, 𝜀 is the porosity coefficient and F is the external force due to the porous 
medium, calculated through the following equation. 
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Here, 𝑑0 is the diameter of the solid particles in the porous medium. All of these parameters in 
the equations were acquired from past experimental work and computational modeling. Some of 
these parameters included the radii of capillaries, endothelial cells, the basement membrane, the 
astrocyte foot process cells, neurons, red blood cells (RBCs), and nanoparticles. In addition, they 
used blood velocity, viscosity, and density, all commonly accepted values in literature, and 
nanoparticle viscosity and density. 
 The boundary condition used on the capillary wall defines absorption of the nanoparticles 
from the wall. This boundary condition is set as the following. 

−𝐷
𝜕𝑐
𝜕𝑦 + 𝑢U𝑐U = 𝑘𝑐U 

In this equation, 𝑘 is the permeability of the capillary wall and D is the diffusion coefficient. This 
equation makes sense when it is considered as a mass balance. The mass of nanoparticles inside 
of the capillary wall, defined as velocity multiplied by concentration, minus the diffusive flux 
through the capillary wall and the out term, defined as permeability multiplied by the 
concentration in the capillary wall is equal to zero because there is no accumulation at the wall. 
This makes sense given the system that is being modeled. Moreover, a zero-flux boundary 
condition was set at the middle of the capillary, which makes sense because of symmetry, and 



the edge of the region of neurons, which makes sense because nanoparticles do not flow past this 
point in the model. A constant velocity in the radial direction of the capillary was also assumed, 
which is a reasonable assumption to model with one-dimensional fluid flow. 

 
Major Results 
 Primarily, the engineers validated their model by comparing simulated data with 
experimental data and found only 6% average deviation, suggesting an accurate model. The 
capillary section of the 2D and 3D models revealed that the passage of nanoparticles in the 
presence of red blood cells leads to a significant reduction in the drug concentration in the 
capillary from 0.5 to 0.1 mol/m3. In other words, the number of red blood cells has a significant 
impact on drug concentration close to the wall, so the greater the red blood cells, the lower the 
concentration of the drug inside the capillary. A concentration plot of nanoparticle flow in the 
capillary is shown for the 3D model in Figure 11 below. Moreover, the concentration of 
nanoparticles was remarkably reduced from 0.4 to 0.1 mol/m3 after passing through the 
endothelial cell layer, suggesting that this layer has significant resistance because of the tight 
junctions between endothelial cells.  

 
Figure 11: Nanoparticle concentration plot within the capillary. White spaces in Figure B 

indicate red blood cells. Figure adapted from Hassanzadeganroudsari et al., 2020. 
 

After passing through the basement membrane of the BBB, the concentration of the 
nanoparticles decreased by 0.02 mol/m3, suggesting a lower mass transfer resistance as compared 
to the endothelial cell section. The astrocyte layer of the BBB further reduced the concentration 
of nanoparticles by 0.02 mol/m3 because mass diffusion through this layer is similar to that of the 
basement membrane. The transfer of the nanoparticles through the neurons resulted in a 0.01 
mol/m3 decrease, bringing the concentration down to 0.04 mol/m3 at this point in the model. This 
region also revealed that a greater number of neurons leads to a greater reduction in nanoparticle 



concentration. Nanoparticle concentration through the four post-capillary layers discussed is 
shown in Figure 12 below. 

 
Figure 12: Nanoparticle concentration in the (top left) endothelial cell layer, (top right) basement 

layer, (bottom left) astrocyte layer, and (bottom right) neurons. Figure adapted from 
Hassanzadeganroudsari et al., 2020. 

 
 The engineers also analyzed the effect of capillary diameter on the concentration and 
diffusive flux of nanoparticles, finding that an increase in capillary diameter from 0.5 to 3.5 μm 
decreased the concentration of nanoparticles in the capillary from 0.42 to 0.20 mol/m3. This is 
due to a greater dispersion of nanoparticles in a larger capillary, thus decreasing the 
concentration. The study also found that the diffusion coefficient of the nanoparticles was 
inversely proportional to the capillary diameter, so an increase in capillary diameter reduced the 
diffusion flux and thus the amount of mass transfer in the capillary, in accordance with Fick’s 
Law. In addition, the study found that increasing the distance between the neurons and the 
capillary wall dramatically reduces the concentration of nanoparticles within the neurons since 
there is more tissue for the particles to diffuse through before reaching the neurons. Finally, the 
study found that increasing the blood flow velocity from 0.1 to 5 mm/s results in a significant 



concentration reduction at the neurons because the nanoparticles in the blood cannot diffuse as 
much through the capillary wall. 
 
Limitations/Future Work 
 There were several limitations to this study’s analysis. Primarily, many broad 
assumptions were made that may have skewed the results. For example, the nanoparticles and 
RBCs were assumed to be spherical, which is not entirely true in reality. The study also did not 
compare results from the 2D and 3D model and simply conglomerated all of the data into one 
analysis. It would be valuable to understand the differences in the setups and results of these 
models. The geometry was also ill-defined and mass transport through the various layers 
themselves was poorly characterized, since the governing equations mostly applied to transport 
across the capillary wall. In addition, laminar flow in the capillary was assumed, but this is not 
necessarily true if the capillary has branches or if the model views the beginning or end of the 
capillary. Another assumption that may not be true is the lack of interaction between the 
nanoparticles and the tissue sounding the neurons. Some of the nanoparticles may be stopped by 
interactions with extracellular components, which will reduce concentration in the neurons. 
Additionally, a no-slip condition between the blood and the capillary wall would have made the 
modeling of blood flow and thus nanoparticle movement within the capillary more accurate. 
Moreover, despite the governing equations of concentration with respect to time, the results 
section made no mention of concentration changes over time. The only results mentioned were 
regarding concentration with respect to position. Analyzing concentration changes over time 
would be incredibly valuable for understanding how long it requires for the drug to diffuse 
across blood brain barrier and reach the patient’s brain. It would also have been valuable to alter 
the nanoparticle concentration within the blood and determine the effect on mass transfer to the 
neurons. 
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